15,371 research outputs found

    Heterotic Anomaly Cancellation in Five Dimensions

    Get PDF
    We study the constraints on five-dimensional N=1 heterotic M-theory imposed by a consistent anomaly-free coupling of bulk and boundary theory. This requires analyzing the cancellation of triangle gauge anomalies on the four-dimensional orbifold planes due to anomaly inflow from the bulk. We find that the semi-simple part of the orbifold gauge groups and certain U(1) symmetries have to be free of quantum anomalies. In addition there can be several anomalous U(1) symmetries on each orbifold plane whose anomalies are cancelled by a non-trivial variation of the bulk vector fields. The mixed U(1) non-abelian anomaly is universal and there is at most one U(1) symmetry with such an anomaly on each plane. In an alternative approach, we also analyze the coupling of five-dimensional gauged supergravity to orbifold gauge theories. We find a somewhat generalized structure of anomaly cancellation in this case which allows, for example, non-universal mixed U(1) gauge anomalies. Anomaly cancellation from the perspective of four-dimensional N=1 effective actions obtained from E_8xE_8 heterotic string- or M-theory by reduction on a Calabi-Yau three-fold is studied as well. The results are consistent with the ones found for five-dimensional heterotic M-theory. Finally, we consider some related issues of phenomenological interest such as model building with anomalous U(1) symmetries, Fayet-Illiopoulos terms and threshold corrections to gauge kinetic functions.Comment: 46 pages, Late

    Computation of generalized equivariant cohomologies of Kac-Moody flag varieties

    Get PDF
    In 1998, Goresky, Kottwitz, and MacPherson showed that for certain projective varieties X equipped with an algebraic action of a complex torus T, the equivariant cohomology ring H_T(X) can be described by combinatorial data obtained from its orbit decomposition. In this paper, we generalize their theorem in three different ways. First, our group G need not be a torus. Second, our space X is an equivariant stratified space, along with some additional hypotheses on the attaching maps. Third, and most important, we allow for generalized equivariant cohomology theories E_G^* instead of H_T^*. For these spaces, we give a combinatorial description of E_G(X) as a subring of \prod E_G(F_i), where the F_i are certain invariant subspaces of X. Our main examples are the flag varieties G/P of Kac-Moody groups G, with the action of the torus of G. In this context, the F_i are the T-fixed points and E_G^* is a T-equivariant complex oriented cohomology theory, such as H_T^*, K_T^* or MU_T^*. We detail several explicit examples.Comment: 19 pages, 6 figures, this is a new and completely modified version of DG/040207

    Single-inclusive production of large-pT charged particles in hadronic collisions at TeV energies and perturbative QCD predictions

    Get PDF
    The single inclusive spectrum of charged particles with transverse momenta pT=3-150 GeV/c measured at midrapidity by the CDF experiment in proton-antiproton (p-pbar) collisions at sqrt(s)=1.96 TeV is compared to next-to-leading order (NLO) perturbative QCD calculations using the most recent parametrizations of the parton distributions and parton-to-hadron fragmentation functions. Above pT~20 GeV/c, there is a very sizeable disagreement of the Tevatron data compared to the NLO predictions and to xT-scaling expectations, suggesting a problem in the experimental data. We also present the predictions for the pT-differential charged hadron spectra and the associated theoretical uncertainties for proton-proton (p-p) collisions at LHC energies (sqrt(s)=0.9-14 TeV). Two procedures to estimate the charged hadron spectra at LHC heavy-ion collision energies (sqrt(s)=2.76,5.5 TeV) from p-p measurements are suggested.Comment: 23 pages, 9 figures. A few text additions. Accepted for publication in JHE
    corecore